Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
ACS Appl Mater Interfaces ; 13(11): 12888-12898, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33715358

RESUMO

With the gradual deep understanding of the tumorigenesis and development process, nanodrug are thought to have great prospects for individualized treatment of tumors. To deliver adequate concentration of active ingredients to targeted tissues, proteins are usually used as carriers to avoid clearance by the immune system. Herein, a new strategy is developed for preparation of the protein-functionalized targeting nanodrugs; different kinds of proteins (albumin, horseradish, transferrin, and ricin) can be quickly loaded in polyacrylic acid nanohydrogels (PAA-NGs) without discrimination within 1 min under the strong driving force of entropy; and the loading efficiency can reach 99% with about 50% loading content. Meanwhile, the activity of the released protein can be well retained. After oriented binding of the targeting agent on the surface of the nanocarriers by a unique and facile technique, the protein-loaded nanodrug exhibits excellent tumor cell uptake and targeting effect. The excellent targeting ability from the oriented binding is further proved by comparing with the non-oriented targeting system. With quick loading of the anti-tumor protein of ricin and oriented binding of transferrin protein (Tf), the targeting nanodrug (PAA-BB@Ricin/Tf) shows a remarkable anti-tumor effect. This study proves a new universal delivery and targeting strategy for improving the nanodelivery system, which has great potentials for clinical application.


Assuntos
Resinas Acrílicas/química , Portadores de Fármacos/química , Hidrogéis/química , Neoplasias/tratamento farmacológico , Proteínas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Entropia , Células Hep G2 , Humanos , Camundongos Endogâmicos ICR , Camundongos Nus , Nanoestruturas/química , Neoplasias/patologia , Proteínas/farmacocinética , Proteínas/uso terapêutico , Ricina/administração & dosagem , Ricina/farmacocinética , Albumina Sérica Humana/administração & dosagem , Albumina Sérica Humana/farmacocinética , Albumina Sérica Humana/uso terapêutico , Transferrina/administração & dosagem , Transferrina/farmacocinética , Transferrina/uso terapêutico
2.
Toxicol Lett ; 337: 57-67, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232776

RESUMO

In this study, a ricin toxin (RT)-induced pulmonary intoxication model was established in mice by intratracheal-delivered RT at a dose of 2× LD50. Based on this model, the histopathological evaluation of the lungs at 24 h and 48 h post-exposure was executed, and the genome-wide transcriptome of the lungs at 4, 12, 24 and 48 h post-exposure was analyzed. Histopathological analysis showed that a large number of neutrophils infiltrated the lungs at 24 h post-exposure, and slight pulmonary edema and perivascular-peribronchiolar edema appeared in the lungs at 48 h. Transcriptome analysis showed that the expression of a large number of genes related to leukocyte migration and chemotaxis consistently increased in the lungs upon exposure to RT, and the expression of genes that participate in acute phase immune and/or inflammatory response, also increased within 12 h of exposure to RT, which could be confirmed by the measurement of cytokines, such as IL-1ß, TNF-α and IL-6, in bronchoalveolar lavage fluid. While the expression of genes related to cellular components of the extracellular matrix and cell membrane integrity consistently decreased in the lungs, and the expression of genes related to antioxidant activity also decreased within the first 12 h. There are 17 differentially expressed genes (DEGs) that participate in ribotoxic stress response, endoplasmic reticulum stress response or immune response in the lungs at 4 h post-exposure. The expression of these DEGs was upregulated, and the number of these DEGs accounted for about 59 % of all DEGs at 4 h. The 17 DEGs may play an important role in the occurrence and development of inflammation. Notably, Atf3, Egr1, Gdf15 and Osm, which are poorly studied, may be important targets for the subsequent research of RT-induced pulmonary intoxication. This study provides new information and insights for RT-induced pulmonary intoxication, and it can provide a reference for the subsequent study of the toxicological mechanism and therapeutic approaches for RT-induced pulmonary intoxication.


Assuntos
Armas Biológicas , Perfilação da Expressão Gênica , Pneumopatias/induzido quimicamente , Ricina/administração & dosagem , Ricina/toxicidade , Reação de Fase Aguda/induzido quimicamente , Reação de Fase Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Inflamação/induzido quimicamente , Inflamação/patologia , Intubação Intratraqueal , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Toxins (Basel) ; 12(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302573

RESUMO

Ricin, produced from the castor beans of Ricinus communis, is a cytotoxin that exerts its action by inactivating ribosomes and causing cell death. Accidental (e.g., ingestion of castor beans) and/or intentional (e.g., suicide) exposure to ricin through the oral route is an area of concern from a public health perspective and no current licensed medical interventions exist to protect from the action of the toxin. Therefore, we examined the oral toxicity of ricin in Balb/C mice and developed a robust food deprivation model of ricin oral intoxication that has enabled the assessment of potential antitoxin treatments. A lethal oral dose was identified and mice were found to succumb to the toxin within 48 h of exposure. We then examined whether a despeciated ovine F(ab')2 antibody fragment, that had previously been demonstrated to protect mice from exposure to aerosolised ricin, could also protect against oral intoxication. Mice were challenged orally with an LD99 of ricin, and 89 and 44% of mice exposed to this otherwise lethal exposure survived after receiving either the parent anti-ricin IgG or F(ab')2, respectively. Combined with our previous work, these results further highlight the benefit of ovine-derived polyclonal antibody antitoxin in providing post-exposure protection against ricin intoxication.


Assuntos
Antitoxinas/administração & dosagem , Modelos Animais de Doenças , Trato Gastrointestinal/efeitos dos fármacos , Ricina/administração & dosagem , Ricina/toxicidade , Administração Oral , Animais , Antitoxinas/isolamento & purificação , Substâncias para a Guerra Química/isolamento & purificação , Substâncias para a Guerra Química/toxicidade , Relação Dose-Resposta a Droga , Feminino , Trato Gastrointestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ricina/isolamento & purificação , Ovinos , Carneiro Doméstico , Resultado do Tratamento
4.
Toxins (Basel) ; 12(6)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481526

RESUMO

Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor bean plant), is one of the most lethal toxins known. To date, there is no approved post-exposure therapy for ricin exposures. This work demonstrates for the first time the therapeutic efficacy of equine-derived anti-ricin F(ab')2 antibodies against lethal pulmonary and systemic ricin exposures in swine. While administration of the antitoxin at 18 h post-exposure protected more than 80% of both intratracheally and intramuscularly ricin-intoxicated swine, treatment at 24 h post-exposure protected 58% of the intramuscular-exposed swine, as opposed to 26% of the intratracheally exposed animals. Quantitation of the anti-ricin neutralizing units in the anti-toxin preparations confirmed that the disparate protection conferred to swine subjected to the two routes of exposure stems from variance between the two models. Furthermore, dose response experiments showed that approximately 3 times lesser amounts of antibody are needed for high-level protection of the intramuscularly compared to the intratracheally intoxicated swine. This study, which demonstrates the high-level post-exposure efficacy of anti-ricin antitoxin at clinically relevant time-points in a large animal model, can serve as the basis for the formulation of post-exposure countermeasures against ricin poisoning in humans.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antitoxinas/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Ricina/antagonistas & inibidores , Administração por Inalação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Cavalos , Injeções Intramusculares , Camundongos , Ricina/administração & dosagem , Ricina/imunologia , Ricina/envenenamento , Sus scrofa , Fatores de Tempo
5.
J Neurosci Methods ; 308: 142-150, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30056087

RESUMO

BACKGROUND: Intrasciatic nerve injection of the Ricinus communis agglutinin (RCA or ricin) causes degeneration of motor neurons (MNs) with functional deficits, such as those that occur in amyotrophic lateral sclerosis (ALS). The objective of this study was to develop a new comprehensive platform for quantitative evaluation of MN loss, muscular atrophy and behavioral deficits using different ricin injection regimens. NEW METHOD: Fluorogold (FG)-guided stereological quantification of MNs, in vivo magnetic resonance imaging (MRI) of muscular atrophy, and CatWalk behavioral testing were used to evaluate the outcome of rats treated with different ricin regimens (RCA60 0.5 µg, RCA60 3 µg, and RCA120 6 µg) as animal models of MN degeneration. RESULTS: FG-guided stereological counting of MNs enabled identification, dissection and robust quantification of ricin-induced MN loss. The RCA60 0.5 µg and RCA120 6 µg regimens were found to be best suited as preclinical MN depletion models, with a low mortality and a reproducible MN loss, accompanied by muscle atrophy and functional deficits evaluated by MRI and the CatWalk method, respectively. COMPARISON WITH EXISTING METHODS: 1) Fluorogold neuronal tracing provides a robust and straightforward means for quantifying MN loss in the spinal cord; 2) MRI is well-suited to non-invasively assess muscle atrophy; and 3) The CatWalk method is more flexible than rotarod test for studying motor deficits. CONCLUSION: Intrasciatic injection of RCA60 or RCA120 induces nerve injury and muscle atrophy, which can be properly evaluated by a comprehensive platform using FG-guided quantitative 3D topographic histological analysis, MRI and the CatWalk behavioral test.


Assuntos
Esclerose Amiotrófica Lateral/patologia , Contagem de Células/métodos , Modelos Animais de Doenças , Neurônios Motores/patologia , Atrofia Muscular/induzido quimicamente , Traumatismos dos Nervos Periféricos/induzido quimicamente , Ricina/administração & dosagem , Animais , Feminino , Imageamento Tridimensional , Locomoção , Imageamento por Ressonância Magnética , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/patologia , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Traumatismos dos Nervos Periféricos/patologia , Ratos Sprague-Dawley , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Estilbamidinas/administração & dosagem
6.
Antimicrob Agents Chemother ; 60(12): 7153-7158, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645243

RESUMO

The plant toxin ricin is considered a biological threat agent of concern and is most toxic when inhaled. Pulmonary exposure to a lethal dose of ricin can be redressed by treatment with antiricin antibodies; however, late antitoxin intervention is of limited efficacy. This limitation is associated with overt lung damage, clinically manifested as severe pulmonary inflammation, which develops over time. Increased evidence indicates that ciprofloxacin, a broad-spectrum antimicrobial agent, possesses immunomodulatory properties. Here we demonstrate that while antiricin antibody administration at late hours after intranasal exposure to ricin confers limited protection to mice, highly efficient protection can be achieved by adding ciprofloxacin to the antibody treatment. We further demonstrate that parameters associated with lung injury, in particular, pulmonary proinflammatory cytokine production, neutrophil migration, and edema, are sharply reduced in ricin-intoxicated mice that were treated with ciprofloxacin. The presented data highlight the potential clinical application of ciprofloxacin as a beneficial immunomodulatory agent in the course of ricin intoxication.


Assuntos
Antitoxinas/farmacologia , Ciprofloxacina/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Ricina/toxicidade , Administração Intranasal , Animais , Citocinas/metabolismo , Feminino , Fatores Imunológicos/farmacologia , Camundongos Endogâmicos , Infiltração de Neutrófilos/efeitos dos fármacos , Pneumonia/metabolismo , Pneumonia/mortalidade , Ricina/administração & dosagem , Ricina/imunologia
7.
Toxicol Lett ; 258: 11-19, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298272

RESUMO

The plant-derived toxins ricin and abrin, operate by site-specific depurination of ribosomes, which in turn leads to protein synthesis arrest. The clinical manifestation following pulmonary exposure to these toxins is that of a severe lung inflammation and respiratory insufficiency. Deciphering the pathways mediating between the catalytic activity and the developing lung inflammation, requires a quantitative appreciation of the catalytic activity of the toxins, in-vivo. In the present study, we monitored truncated cDNA molecules which are formed by reverse transcription when a depurinated 28S rRNA serves as template. We found that maximal depurination after intranasal exposure of mice to 2LD50 ricin was reached 48h, where nearly 40% of the ribosomes have been depurinated and that depurination can be halted by post-exposure administration of anti-ricin antibodies. We next demonstrated that the effect of ricin intoxication on different cell types populating the lungs differs greatly, and that outstandingly high levels of damage (80% depurination), were observed in particular for pulmonary epithelial cells. Finally, we found that the magnitude of depurination induced by the related plant-derived toxin abrin, was significantly lower in comparison to ricin, and can be attributed mostly to reduced depurination of pulmonary epithelial cells by abrin. This study provides for the first time vital information regarding the scope and timing of the catalytic performance of ricin and abrin in the lungs of intact animals.


Assuntos
Citotoxinas/toxicidade , Pulmão/efeitos dos fármacos , Intoxicação/metabolismo , Inibidores da Síntese de Proteínas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ricina/toxicidade , Abrina/administração & dosagem , Abrina/isolamento & purificação , Abrina/metabolismo , Abrina/toxicidade , Abrus/enzimologia , Administração Intranasal , Animais , Antitoxinas/uso terapêutico , Citotoxinas/administração & dosagem , Citotoxinas/antagonistas & inibidores , Citotoxinas/metabolismo , DNA Complementar/metabolismo , Feminino , Citometria de Fluxo , Dose Letal Mediana , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Pneumonia/etiologia , Pneumonia/prevenção & controle , Intoxicação/tratamento farmacológico , Intoxicação/patologia , Intoxicação/fisiopatologia , Inibidores da Síntese de Proteínas/administração & dosagem , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/metabolismo , Purinas/metabolismo , RNA Ribossômico 28S/metabolismo , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/prevenção & controle , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Ribossomos/enzimologia , Ribossomos/metabolismo , Ricina/administração & dosagem , Ricina/antagonistas & inibidores , Ricina/metabolismo , Ricinus/enzimologia
8.
J Pharm Sci ; 105(5): 1603-1613, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26987947

RESUMO

RiVax is a candidate ricin toxin subunit vaccine antigen that has proven to be safe in human phase I clinical trials. In this study, we introduced double and triple cavity-filling point mutations into the RiVax antigen with the expectation that stability-enhancing modifications would have a beneficial effect on overall immunogenicity of the recombinant proteins. We demonstrate that 2 RiVax triple mutant derivatives, RB (V81L/C171L/V204I) and RC (V81I/C171L/V204I), when adsorbed to aluminum salts adjuvant and tested in a mouse prime-boost-boost regimen were 5- to 10-fold more effective than RiVax at eliciting toxin-neutralizing serum IgG antibody titers. Increased toxin neutralizing antibody values and seroconversion rates were evident at different antigen dosages and within 7 days after the first booster. Quantitative stability/flexibility relationships analysis revealed that the RB and RC mutations affect rigidification of regions spanning residues 98-103, which constitutes a known immunodominant neutralizing B-cell epitope. A more detailed understanding of the immunogenic nature of RB and RC may provide insight into the fundamental relationship between local protein stability and antibody reactivity.


Assuntos
Anticorpos Neutralizantes/sangue , Ricina/administração & dosagem , Vacinas de Subunidades/administração & dosagem , Vacinas/sangue , Animais , Antígenos/sangue , Substâncias para a Guerra Química/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ricina/genética , Vacinas/química , Vacinas de Subunidades/genética
9.
Sci Rep ; 6: 18781, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728251

RESUMO

Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 µg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 µg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.


Assuntos
Eletricidade , Ricina/antagonistas & inibidores , Ricina/toxicidade , Testes de Toxicidade , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Ricina/administração & dosagem , Ricina/química , Fatores de Tempo , Testes de Toxicidade/métodos
10.
Toxins (Basel) ; 7(11): 4817-31, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26593946

RESUMO

Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs) and dendritic cells (DCs) displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication.


Assuntos
Substâncias para a Guerra Química , Pulmão/efeitos dos fármacos , Ricina/administração & dosagem , Ricina/toxicidade , Administração Intranasal , Animais , Contagem de Células , Células Dendríticas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Neutrófilos/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo
11.
Hum Vaccin Immunother ; 11(7): 1779-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26038805

RESUMO

Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the "white powder incident" in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans.


Assuntos
Ricina/imunologia , Ricina/envenenamento , Vacinas/genética , Vacinas/imunologia , Administração por Inalação , Animais , Bioterrorismo , Escherichia coli/genética , Escherichia coli/metabolismo , Imunização Passiva , Injeções Subcutâneas , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Testes de Neutralização , Plasmídeos/genética , Reação em Cadeia da Polimerase , Ricina/administração & dosagem , Análise de Sobrevida , Vacinas/administração & dosagem
12.
Oncotarget ; 5(19): 9460-71, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25294806

RESUMO

The emergence of targeted cancer therapy has been limited by the paucity of determinants which are tumor-specific and generally associated with disease, and have cell dynamics which effectively deploy cytotoxic payloads. Guanylyl cyclase C (GUCY2C) may be ideal for targeting because it is normally expressed only in insulated barrier compartments, including intestine and brain, but over-expressed by systemic metastatic colorectal tumors. Here, we reveal that GUCY2C rapidly internalizes from the cell surface to lysosomes in intestinal and colorectal cancer cells. Endocytosis is independent of ligand binding and receptor activation, and is mediated by clathrin. This mechanism suggests a design for immunotoxins comprising a GUCY2C-directed monoclonal antibody conjugated through a reducible disulfide linkage to ricin A chain, which is activated to a potent cytotoxin in lysosomes. Indeed, this immunotoxin specifically killed GUCY2C-expressing colorectal cancer cells in a lysosomal- and clathrin-dependent fashion. Moreover, this immunotoxin reduced pulmonary tumors>80% (p<0.001), and improved survival 25% (p<0.001), in mice with established colorectal cancer metastases. Further, therapeutic efficacy was achieved without histologic evidence of toxicity in normal tissues. These observations support GUCY2C-targeted immunotoxins as novel therapeutics for metastatic tumors originating in the GI tract, including colorectum, stomach, esophagus, and pancreas.


Assuntos
Anticorpos Monoclonais/imunologia , Neoplasias Gastrointestinais/tratamento farmacológico , Imunotoxinas/farmacologia , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Ricina/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Caveolinas/metabolismo , Linhagem Celular Tumoral , Clatrina/metabolismo , Portadores de Fármacos , Endocitose , Neoplasias Gastrointestinais/patologia , Imunoterapia , Imunotoxinas/administração & dosagem , Lisossomos , Camundongos , Terapia de Alvo Molecular , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Receptores de Enterotoxina , Ricina/administração & dosagem , Ricina/genética
13.
Toxicol Pathol ; 42(3): 573-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23761937

RESUMO

Ricin toxin, a type 2 ribosome-inactivating protein and a category B bioterrorism agent, is produced from the seeds of castor oil plant (Ricinus communis). Chronic pathological changes in survivors of aerosolized ricin exposure have not been reported in primates. Here we compare and contrast the pathological changes manifested between rhesus macaques (RM) that succumbed to lethal dose of ricin (group I) and survivor RM exposed to low dose of ricin (group II). All animals in group I exhibited severe diffuse, necrotizing bronchiolitis and alveolitis with fibrinopurulent bronchointerstitial pneumonia, massive alveolar, perivascular and peribronchial/bronchiolar edema with hemorrhage, and necropurulent and hemorrhagic tracheobronchial lymphadenitis. All animals from group II had multifocal, fibrosing interstitial pneumonia with prominent alveolar histiocytosis and type II pneumocyte hyperplasia. Subacute changes like infiltration by lymphocytes and plasma cells and persistence of edematous fluid were occasionally present in lung and tracheobronchial lymph nodes. The changes appear to be a continuum wherein the inflammatory response shifts from an acute to subacute/chronic reparative process if the animals can survive the initial insult.


Assuntos
Aerossóis , Pulmão , Ricina , Administração por Inalação , Aerossóis/administração & dosagem , Animais , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macaca mulatta , Necrose/induzido quimicamente , Necrose/patologia , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ricina/administração & dosagem , Ricina/toxicidade , Testes de Toxicidade , Testes de Toxicidade Subaguda
14.
Hum Vaccin Immunother ; 9(4): 744-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23563512

RESUMO

There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.


Assuntos
Mutação Puntual , Ricina/administração & dosagem , Ricina/imunologia , Animais , Anticorpos Neutralizantes/sangue , Antitoxinas/sangue , Glicemia/análise , Calorimetria , Dicroísmo Circular , Modelos Animais de Doenças , Estabilidade de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mutantes/administração & dosagem , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Intoxicação/prevenção & controle , Conformação Proteica , Estabilidade Proteica , Ricina/química , Ricina/genética , Ricina/toxicidade , Espectrometria de Fluorescência , Análise de Sobrevida , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/química , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
15.
Toxins (Basel) ; 5(2): 224-48, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23364220

RESUMO

Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N) and V76 (to I, or M) had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA. Moreover, each VLP(-) variant tested provided protection comparable with that of RTA1-33/44-198 against supralethal intranasal ricin challenge as judged by animal survival and several biomarkers. To understand better how VLP substitutions and mutations near the VLP site impact epitope structure, we introduced a previously described thermal stabilizing disulfide bond (R48C/T77C) along with the D75N or V76I substitutions in RTA1-33/44-198. The D75N mutation was compatible with the adjacent stabilizing R48C/T77C disulfide bond and the T(m) was unaffected, whereas the V76I mutation was less compatible with the adjacent disulfide bond involving C77. A crystal structure of the RTA1-33/44-198 R48C/T77C/D75N variant showed that the structural integrity of the immunogen was largely conserved and that a stable immunogen could be produced from E. coli. We conclude that it is feasible to disrupt the VLP site in RTA1-33/44-198 with little or no impact on apparent protein stability or protective efficacy in mice and such variants can be stabilized further by introduction of a disulfide bond.


Assuntos
Substâncias para a Guerra Química/toxicidade , Peptídeos/administração & dosagem , Ricina/genética , Ricina/toxicidade , Vacinas Sintéticas/administração & dosagem , Administração Intranasal , Animais , Glicemia/análise , Líquido da Lavagem Broncoalveolar/química , Feminino , Injeções Intramusculares , Dose Letal Mediana , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Peptídeos/genética , Ricina/administração & dosagem , Ricina/química
16.
Chin J Integr Med ; 19(1): 48-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21717157

RESUMO

OBJECTIVE: To explore the effect of ricin temperature response gel on breast cancer and its regulatory effect on immune function in rats. METHODS: Ricin was purified by chromatography and identified by immunoblotting. The rat subcutaneously transplanted breast cancer model was established. Forty model rats with a tumor diameter of about 3.0 cm were subjected to the study. They were randomized into four groups equally: the model group and three treated groups (blank gel, ricin, ricin-gel) were administered with blank gel, ricin, and ricin temperature response gel via percutaneous intratumor injection, respectively. The tumor was isolated 10 days later for the estimation of tumor inhibition rate (TIR) by weighing, pathologic examination, and detection of tumor apoptosis-associated genes bcl-2 and bax with semiquantitative RT-PCR. Also, peripheral blood was obtained to test T-lymphocyte subsets, the killing function of lymphocytes, and the contents of tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2). The outcomes were compared between groups. RESULTS: The TIR in the ricin-gel group was 61.8%, with the pathologic examination showing extensive tumor tissue necrosis. Compared with the model group, after ricin temperature response gel treatment, bcl-2 expression was down-regulated, bax expression was up-regulated, CD4+ lymphocytes and CD4+/CD8+ ratio in peripheral blood were increased, the killing function of lymphocytes was enhanced, and the contents of TNF-α and IL-2 were elevated (P < 0.05 or P < 0.01). CONCLUSION: Intratumor injection of ricin temperature-responsive gel showed significant antitumor effect on breast cancer and could enhance the immune function in the tumor-bearing rat.


Assuntos
Antineoplásicos/administração & dosagem , Imunomodulação/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Ricina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Relação CD4-CD8 , Modelos Animais de Doenças , Feminino , Géis/uso terapêutico , Imuno-Histoquímica , Injeções Intralesionais , Interleucina-2/imunologia , Interleucina-2/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Temperatura , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Drug Chem Toxicol ; 36(2): 224-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22947129

RESUMO

Ricin toxin A chain (RTA) is the cytotoxic component of the dimeric protein, ricin, one of the most potent and deadly plant toxins extracted from the seeds of Ricinus communis. RTA has been investigated as a potential candidate for cancer chemotherapy, in the form of immunotoxins, and as a method for depleting macrophages in vivo. The toxicity of RTA immunotoxins is mostly characterized by inflammation and necrosis and has been attributed to the RTA moiety of the conjugate. The present study was carried out to investigate the toxicity of intravenously (i.v.) administered RTA alone and to assess whether the observed tissue injuries are associated with increases in oxidative stress (OS) and inflammation. RTA (10 or 90 µg/kg body weight) was administered to animals i.v., and 5 or 24 hours later, liver, lungs, kidneys, and hearts were examined. RTA, at a dose of 90 µg/kg (i.v.), resulted in significant increases (P < 0.05) in an inflammatory response (i.e., increases in hepatic and lung myeloperoxidase activity) and increases in oxidant response (increases in lipid peroxidation and decreases in glutathione levels in hepatic and lung homogenates). These data suggest that i.v. administration of RTA resulted in organ injuries that were associated with inflammation and OS.


Assuntos
Inflamação/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Ricina/toxicidade , Administração Intravenosa , Animais , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ricina/administração & dosagem , Fatores de Tempo
18.
Adv Healthc Mater ; 1(3): 348-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23184753

RESUMO

Mesoporous silica nanoparticle-supported lipid bilayers, or "protocells", exhibit a high loading capacity, enhanced colloidal stability, and peptide-directed, cell-specific uptake, making them especially well-suited for targeted delivery of protein toxins to cancer. Protocells loaded with ricin toxin A-chain (RTA) and targeted to hepatocellular carcinoma cause complete cell death at 30 pM of RTA without affecting the viability of control hepatocytes.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Bicamadas Lipídicas/química , Nanocápsulas/química , Ricina/administração & dosagem , Ricina/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Teste de Materiais , Porosidade
19.
Pharmazie ; 67(7): 618-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22888519

RESUMO

Cobra venom cytotoxin (CVC) loaded in poly (lactide-co-glycolide) (PLGA) microspheres was mixed with ricin and encapsulated in a thermosensitive PLGA-PEG-PLGA hydrogel for this study. This sequential sustained-release preparation (SSRP) containing ricin and CVC could avoid burst release effect of CVC from microspheres. In addition, in SSRP, the two biotoxins have different drug release rates and antitumor mechanisms, which can be complementary to each other. Ricin has a faster release rate than CVC. It can combine with the tumor cell membrane and enter the cell, inhibiting protein synthesis within 2 weeks. Whereas CVC releases slowly in 5 weeks directly dissolving the tumor cell membrane and killing the cells which are less-sensitive to ricin. The in vivo experiments showed that intratumoral injection of SSRP could inhibit hepatocellular carcinoma growth significantly, and the tumor growth inhibition rate reached 73.5%. It appears that a new medicine preparation for cancer local treatment should be further studied for clinical applications.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Venenos Elapídicos/administração & dosagem , Venenos Elapídicos/farmacologia , Ricina/administração & dosagem , Ricina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Portadores de Fármacos , Venenos Elapídicos/química , Excipientes , Humanos , Hidrogéis , Ácido Láctico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Microesferas , Transplante de Neoplasias , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ricina/química , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Curr Top Microbiol Immunol ; 357: 243-57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21956160

RESUMO

Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia may help elucidate the relationship of type II diabetes, insulin resistance, and inflammation. Studies in non-human primates are most relevant for testing and developing agents having clinical utility. But these animals are expensive and limited in quantity, and so rodents are used for most mechanistic studies.


Assuntos
Modelos Animais , Ricina/envenenamento , Administração por Inalação , Administração Oral , Animais , Injeções , Intestino Delgado/patologia , Pulmão/patologia , Macaca , Camundongos , Ricina/administração & dosagem , Estômago/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...